Data Analysts exist at the intersection of information technology, statistics and business. They combine these fields in order to help businesses and organizations succeed. The primary goal of a data analyst is to increase efficiency and improve performance by discovering patterns in data.
The work of a data analyst involves working with data throughout the data analysis pipeline. This means working with data in various ways. The primary steps in the data analytics process are data mining, data management, statistical analysis, and data presentation. The importance and balance of these steps depend on the data being used and the goal of the analysis.
Data mining is an essential process for many data analytics tasks. This involves extracting data from unstructured data sources. These may include written text, large complex databases, or raw sensor data. The key steps in this process are to extract, transform, and load data. These steps convert raw data into a useful and manageable format. This prepares data for storage and analysis. Data mining is generally the most time-intensive step in the data analysis pipeline.
Data management or data warehousing is another key aspect of a data analyst’s job. Data warehousing involves designing and implementing databases that allow easy access to the results of data mining. This step generally involves creating and managing SQL databases.
Statistical analysis allows analysts to create insights from data. Both statistics and machine learning techniques are used to analyze data. Big data is used to create statistical models that reveal trends in data. These models can then be applied to new data to make predictions and inform decision making. Statistical programming languages such as R or Python (with pandas) are essential to this process.
The final step in most data analytics processes is data presentation. This step allows insights to be shared with stakeholders. Data visualization is often the most important tool in data presentation. Compelling visualizations can help tell the story in the data which may help executives and managers understand the importance of these insights.